Your search
Results 2 resources
-
Whole-body three-dimensional surface imaging (3DSI) offers the ability to monitor morphologic changes in multiple areas without the need to individually scan every anatomical region of interest. One area of application is the digital quantification of leg volume. Certain types of morphology do not permit complete circumferential scan of the leg surface. A workflow capable of precisely estimating the missing data is therefore required. We thus aimed to describe and apply a novel workflow to collect bilateral leg volume measurements from whole-body 3D surface scans regardless of leg morphology and to assess workflow precision. For each study participant, whole-body 3DSI was conducted twice successively in a single session with subject repositioning between scans. Paired samples of bilateral leg volume were calculated from the 3D surface data, with workflow variations for complete and limited leg surface visibility. Workflow precision was assessed by calculating the relative percent differences between repeated leg volumes. A total of 82 subjects were included in this study. The mean relative differences between paired left and right leg volumes were 0.73 ± 0.62% and 0.82 ± 0.65%. The workflow variations for completely and partially visible leg surfaces yielded similarly low values. The workflow examined in this study provides a precise method to digitally monitor leg volume regardless of leg morphology. It could aid in objectively comparing medical treatment options of the leg in a clinical setting. Whole-body scans acquired using the described 3DSI routine may allow simultaneous assessment of other changes in body morphology after further validation.
-
Background/Objectives: Lipedema is a chronic disorder characterized by disproportionate fat accumulation in the extremities, causing pain, bruising, and reduced mobility. When conservative therapy fails, liposuction is considered an effective treatment option. Prior studies often relied on subjective or non-standardized measures, limiting precision. This study aimed to objectively assess volumetric changes after liposuction in stage III lipedema using high-resolution 3D imaging to quantify postoperative changes in circumference and volume, providing individualized yet standardized outcome measures aligned with precision medicine. Methods: We retrospectively analyzed 66 patients who underwent 161 water-assisted liposuctions (WALs). Pre- and postoperative measurements were performed with the VECTRA© WB360 system, allowing reproducible, anatomically specific quantification of limb volumes and circumferences. Secondary endpoints included in-hospital complications. Results: Liposuction achieved significant reductions in all treated regions, most pronounced in the proximal thigh and upper arm. Thigh volume decreased by 4.10–9.25% (q < 0.001), while upper arm volume decreased by 15.63% (left) and 20.15% (right) (q = 0.001). Circumference decreased by up to 5.2% in the thigh (q < 0.001) and 12.27% (q = 0.001) in the upper arm. All changes were calculated relative to baseline values, allowing personalized interpretation of treatment effects. Conclusions: This is the first study to objectively quantify postoperative lipedema changes using whole-body 3D surface imaging. By capturing each patient’s contours pre- and postoperatively, this approach enables individualized evaluation while permitting standardized comparison across patients. It offers a precise understanding of surgical outcomes and supports integration of precision medicine principles in lipedema surgery.
Explore
Topic
- Lipedema (2)
- Open Access (2)
- Original studies and data (2)
Resource type
- Journal Article (2)
Publication year
Publication
- Open Access (2)