Your search

Topic

Results 9 resources

  • Lipedema is a chronic disorder that mainly affects women. It is often misdiagnosed, and its etiology remains unknown. Recent research indicates an accumulation of macrophages and a shift in macrophage polarization in lipedema. One known protein superfamily that contributes to macrophage accumulation and polarization is the macrophage migration inhibitory factor (MIF) family. MIF-1 and MIF-2 are ubiquitously expressed and also regulate inflammatory processes in adipose tissue. In this study, the expression of MIF-1, MIF-2 and CD74—a common receptor for both cytokines—was analyzed in tissue samples of 11 lipedema and 11 BMI-matched, age-matched and anatomically matched control patients using qPCR and immunohistochemistry (IHC). The mRNA expression of MIF-1 (mean 1.256; SD 0.303; p = 0.0485) and CD74 (mean 1.514; SD 0.397; p = 0.0097) were significantly elevated in lipedema patients, while MIF-2 expression was unaffected (mean 1.004; SD 0.358; p = 0.9718). The IHC analysis corroborated the results for CD74 expression on a cellular level. In conclusion, our results provide first evidence for a potential involvement of the MIF family, presumably via the MIF-1-CD74 axis, in lipedema.

  • Lipedema is a connective tissue disorder characterized by increased dilated blood vessels (angiogenesis), inflammation, and fibrosis of the subcutaneous adipose tissue. This project aims to gain insights into the angiogenic processes in lipedema using human umbilical vein endothelial cells (HUVECs) as an in vitro model. HUVECs were cultured in conditioned media (CM) collected from healthy (non-lipedema, AQH) and lipedema adipocytes (AQL). The impacts on the expression levels of multiple endothelial and angiogenic markers [CD31, von Willebrand Factor (vWF), angiopoietin 2 (ANG2), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMPs), NOTCH and its ligands] in HUVECs were investigated. The data demonstrate an increased expression of CD31 and ANG2 at both the gene and protein levels in HUVECs treated with AQL CM in 2D monolayer and 3D cultures compared to untreated cells. Furthermore, the expression of the vWF, NOTCH 4, and DELTA-4 genes decreased. In contrast, increased VEGF, MMP9, and HGF gene expression was detected in HUVECs treated with AQL CM cultured in a 2D monolayer. In addition, the results of a tube formation assay indicate that the number of formed tubes increased in lipedema-treated HUVECs cultured in a 2D monolayer. Together, the data indicate that lipedema adipocyte-CM promotes angiogenesis through paracrine-driven mechanisms.

  • IntroductionLipedema is a painful subcutaneous adipose tissue (SAT) disease characterized by adipocyte hypertrophy, immune cell recruitment, and fibrosis in the affected areas. These features are thought to contribute to the development and progression of the condition. However, the relationship between lipedema disease stage and the associated adipose tissue changes has not been determined so far.MethodsSAT biopsies of 32 lipedema patients, ranging across the pathological stages I to III, and 14 BMI- and age-matched controls were harvested from lipedema-affected thighs and non-symptomatic lower abdominal regions. Histological and immunohistochemical (IHC) staining and expression analysis of markers for adipogenesis, immunomodulation, and fibrosis were performed on the tissue biopsies.ResultsLipedema patients showed increased adipocyte areas and a stage-dependent shift towards larger cell sizes in the thighs. Lipedema SAT was linked with increased interstitial collagen accumulation in the thighs, but not the lower abdominal region when compared to controls. There was a trend toward progressive SAT fibrosis of the affected thighs with increasing lipedema stage. Elevated gene expression levels of macrophage markers were found for thigh SAT biopsies, but not in the abdominal region. IHC staining of lipedema thigh biopsies confirmed a transiently elevated macrophage polarization towards an M2-like (anti-inflammatory) phenotype.ConclusionsIn summary, lipedema SAT is associated with stage-dependent adipocyte hypertrophy, stage-progressive interstitial fibrosis and elevated proportion of M2-like macrophages. The character of the inflammatory response differs from primary obesity and may possess an essential role in the development of lipedema.

  • PURPOSE: Lipedema is a painful subcutaneous adipose tissue (SAT) disease involving disproportionate SAT accumulation in the lower extremities that is frequently misdiagnosed as obesity. We developed a semiautomatic segmentation pipeline to quantify the unique lower-extremity SAT quantity in lipedema from multislice chemical-shift-encoded (CSE) magnetic resonance imaging (MRI). APPROACH: Patients with lipedema (n=15) and controls (n=13) matched for age and body mass index (BMI) underwent CSE-MRI acquired from the thighs to ankles. Images were segmented to partition SAT and skeletal muscle with a semiautomated algorithm incorporating classical image processing techniques (thresholding, active contours, Boolean operations, and morphological operations). The Dice similarity coefficient (DSC) was computed for SAT and muscle automated versus ground truth segmentations in the calf and thigh. SAT and muscle volumes and the SAT-to-muscle volume ratio were calculated across slices for decades containing 10% of total slices per participant. The effect size was calculated, and Mann-Whitney U test applied to compare metrics in each decade between groups (significance: two-sided P<0.05). RESULTS: Mean DSC for SAT segmentations was 0.96 in the calf and 0.98 in the thigh, and for muscle was 0.97 in the calf and 0.97 in the thigh. In all decades, mean SAT volume was significantly elevated in participants with versus without lipedema (P<0.01), whereas muscle volume did not differ. Mean SAT-to-muscle volume ratio was significantly elevated (P<0.001) in all decades, where the greatest effect size for distinguishing lipedema was in the seventh decade approximately midthigh (r=0.76). CONCLUSIONS: The semiautomated segmentation of lower-extremity SAT and muscle from CSE-MRI could enable fast multislice analysis of SAT deposition throughout the legs relevant to distinguishing patients with lipedema from females with similar BMI but without SAT disease.

  • Lipedema, lipohypertrophy and secondary lymphedema are three conditions characterized by disproportionate subcutaneous fat accumulation affecting the extremities. Despite the apparent similarities and differences among their phenotypes, a comprehensive histological and molecular comparison does not yet exist, supporting the idea that there is an insufficient understanding of the conditions and particularly of lipohypertrophy. In our study, we performed histological and molecular analysis in anatomically-, BMI- and gender-matched samples of lipedema, lipohypertrophy and secondary lymphedema versus healthy control patients. Hereby, we found a significantly increased epidermal thickness only in patients with lipedema and secondary lymphedema, while significant adipocyte hypertrophy was identified in both lipedema and lipohypertrophy. Interestingly, the assessment of lymphatic vessel morphology showed significantly decreased total area coverage in lipohypertrophy versus the other conditions, while VEGF-D expression was significantly decreased across all conditions. The analysis of junctional genes often associated with permeability indicated a distinct and higher expression only in secondary lymphedema. Finally, the evaluation of the immune cell infiltrate verified the increased CD4+ cell and macrophage infiltration in lymphedema and lipedema respectively, without depicting a distinct immune cell profile in lipohypertrophy. Our study describes the distinct histological and molecular characteristics of lipohypertrophy, clearly distinguishing it from its two most important differential diagnoses.

  • BACKGROUND: Lipedema is a progressive disease, diagnosed most often in women, which is characterized by the unproportionate and symmetrical distribution of adipose tissue primarily in the extremities. Despite numerous results from in vitro and in vivo studies, many questions regarding the pathology and genetic background of lipedema have remained unanswered. METHODS: Adipose tissue-derived stromal/stem cells (ASCs) were isolated from lipoaspirates derived from non-obese and obese lipedema and non-lipedema donors. Growth/morphology, metabolic activity, differentiation potential and gene expression were evaluated using quantification of lipid accumulation, metabolic activity assay, live-cell imaging, RT-PCR, quantitative PCR and immunocytochemical staining. RESULTS: The adipogenic potential of lipedema and non-lipedema ASCs did not rise in parallel with the donors' BMI and did not differ significantly between groups. However, in vitro differentiated adipocytes from non-obese lipedema donors showed significant upregulation of adipogenic gene expression compared to non-obese controls. All other genes tested were equally expressed in lipedema and non-lipedema adipocytes. The ADIPOQ/LEP ratio (ALR) was significantly reduced in adipocytes from obese lipedema donors compared to their non-obese lipedema counterparts. Increased stress fiber-integrated SMA was visible in lipedema adipocytes compared to non-lipedema controls and appeared enhanced in adipocytes from obese lipedema donors. CONCLUSIONS: Not only lipedema per se but also BMI of donors impact adipogenic gene expression substantially in vitro. The significantly reduced ALR and the increased occurrence of myofibroblast-like cells in "obese" lipedema adipocyte cultures underlines the importance of attention towards the co-occurrence of lipedema and obesity. These are important findings towards accurate diagnosis of lipedema.

  • Dysfunction of collecting lymphatic vessel pumping is associated with an array of pathologies. S-(-)-Bay K8644 (BayK), a small-molecule agonist of L-type calcium channels, improves vessel contractility ex vivo but has been left unexplored in vivo because of poor lymphatic access and risk of deleterious off-target effects. When formulated within lymph-draining nanoparticles (NPs), BayK acutely improved lymphatic vessel function, effects not seen from treatment with BayK in its free form. By preventing rapid drug access to the circulation, NP formulation also reduced BayK's dose-limiting side effects. When applied to a mouse model of lymphedema, treatment with BayK formulated in lymph-draining NPs, but not free BayK, improved pumping pressure generated by intact lymphatic vessels and tissue remodeling associated with the pathology. This work reveals the utility of a lymph-targeting NP platform to pharmacologically enhance lymphatic pumping in vivo and highlights a promising approach to treating lymphatic dysfunction.

  • Lymphangiogenesis is the mechanism by which the lymphatic system develops and expands new vessels facilitating fluid drainage and immune cell trafficking. Models to study lymphangiogenesis are necessary for a better understanding of the underlying mechanisms and to identify or test new therapeutic agents that target lymphangiogenesis. Across the lymphatic literature, multiple models have been developed to study lymphangiogenesis in vitro and in vivo. In vitro, lymphangiogenesis can be modeled with varying complexity, from monolayers to hydrogels to explants, with common metrics for characterizing proliferation, migration, and sprouting of lymphatic endothelial cells (LECs) and vessels. In comparison, in vivo models of lymphangiogenesis often use genetically modified zebrafish and mice, with in situ mouse models in the ear, cornea, hind leg, and tail. In vivo metrics, such as activation of LECs, number of new lymphatic vessels, and sprouting, mirror those most used in vitro, with the addition of lymphatic vessel hyperplasia and drainage. The impacts of lymphangiogenesis vary by context of tissue and pathology. Therapeutic targeting of lymphangiogenesis can have paradoxical effects depending on the pathology including lymphedema, cancer, organ transplant, and inflammation. In this review, we describe and compare lymphangiogenic outcomes and metrics between in vitro and in vivo studies, specifically reviewing only those publications in which both testing formats are used. We find that in vitro studies correlate well with in vivo in wound healing and development, but not in the reproductive tract or the complex tumor microenvironment. Considerations for improving in vitro models are to increase complexity with perfusable microfluidic devices, co-cultures with tissue-specific support cells, the inclusion of fluid flow, and pairing in vitro models of differing complexities. We believe that these changes would strengthen the correlation between in vitro and in vivo outcomes, giving more insight into lymphangiogenesis in healthy and pathological states.

  • The lymphatic circulation regulates transfer of tissue fluid and immune cells towards the venous circulation. While obesity impairs lymphatic vessel function, the contribution of lymphatic endothelial cells (LEC) to metabolic disease phenotypes is poorly understood. LEC of lymphatic microvessels are in direct contact with the interstitial fluid, whose composition changes during the development of obesity, markedly by increases in saturated fatty acids. Palmitate, the most prevalent saturated fatty acid in lymph and blood, is detrimental to metabolism and function of diverse tissues, but its impact on LEC function is relatively unknown. Here, palmitate (but not its unsaturated counterpart palmitoleate) destabilized adherens junctions in human microvascular LEC in culture, visualized as changes in VE-cadherin, ⍺-catenin, and β-catenin localization. Detachment of these proteins from cortical actin filaments was associated with abundant actomyosin stress fibers. The effects were Rho-associated protein kinase (ROCK)- and myosin-dependent, as inhibition with Y-27632 or blebbistatin, respectively, prevented stress fiber accumulation and preserved junctions. Without functional junctions, palmitate-treated LEC failed to directionally migrate to close wounds in 2-dimensions and failed to form endothelial tubes in 3-dimensions. A reorganization of the lymphatic endothelial actin cytoskeleton may contribute to lymphatic dysfunction in obesity and could be considered as a therapeutic target.

Last update from database: 3/12/25, 8:25 AM (UTC)

Explore